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ABSTARCT 

 
Duchenne Muscular Dystrophy (DMD), characterized by the lack of dystrophin, results 

from a mutation in the Xp21 gene which encodes for the protein dystrophin that links the 

extracellular matrix to the actin cytoskeleton in skeletal, cardiac and smooth muscle. Slow colonic 

transit and chronic constipation are common in DMD patients due to the weakening of the 

abdominal wall muscles and gut smooth muscle. However, the cause of this hypocontractility in 

DMD patients and the expression of contractile proteins in smooth muscle are unknown. 

Expression of contractile proteins is regulated by the signaling pathways activated by excitatory 

(e.g., acetylcholine, ACh) and inhibitory transmitters (e.g., nitric oxide). Hydrogen sulfide (H2S) 

is well-known for its anti-oxidant effects; however, its utility to restore DMD-induced effects is 

unknown. Aim: To investigate the expression of contractile proteins and smooth muscle function 

in the colon of wild type mice and models of DMD (mdx and mdx/mTR mice) and the effect of 

H2S on these in mdx mice. Methods: Contraction of colonic segments was measured in the 

longitudinal orientation from 3-month old control and mdx mice, and 9-month old control and 

mdx/mTR mice, (mdx/mTR exhibit increased disease severity). The effect of SG1002, an orally 

active slow releasing H2S agent, was tested in mdx/mTR mice (40 mg/kg body weight in 

chow/every 3 days starting from 3 weeks to 9 months). Expression of contractile proteins was 
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measured by qRT-PCR and western blot. Results: Expression of smoothelin, caldesmon, calponin 

and tropomyosin was decreased in colonic smooth muscle of mdx mice compared to control. This 

decrease was associated with a decrease in ACh-induced contraction in colonic segments (21 ± 3 

mN/100 mg tissue in control and 3 ± 1 mN/100 mg tissue in mdx mice). To identify the specific 

involvement of smooth muscle dysfunction in the decrease in contraction, colonic muscle cells 

were isolated and contraction in response to ACh was measured by scanning micrometry and 

expressed as the percent decrease in cell length from control cell length.  ACh-induced contraction 

was also inhibited in muscle cells isolated from mdx mice compared to control (43±5% in control 

and 27±3% in mdx mice). ACh-induced contraction was decreased in colonic segments from 

mdx/mTR mice (12 ± 2 mN/100 mg tissue in control versus 4 ± 1 mN/100 mg tissue in mdx/mTR) 

and the decrease was partly reversed by SG1002 treatment (9 ± 1 mN/100 mg tissue). mRNA 

expression of thin filament associated proteins was also decreased in colonic smooth muscle from 

mdx/mTR mice and the decrease was reversed by SG1002. These results suggest that H2S restores 

contractile protein mRNA expression and contraction in mdx/mTR mice. Conclusion: The data 

indicate that the lack of dystrophin in mdx mice adversely affects colonic smooth muscle 

contractility through the down regulation of contractile protein mRNA expression. Treatment of 

mdx/mTR mice with H2S restores contractile phenotype. Thus, H2S treatment would be an area of 

study in therapeutic control of DMD-induced gastrointestinal motility disorders.  
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Chapter 1: INTRODUCTION 

  

1.1: Background Duchenne Muscular Dystrophy 

Duchenne Muscular Dystrophy (DMD) is a rapidly progressive neuromuscular and 

X-linked disorder that affects 15.9 to 19.5 per 100,000 live births, characterized by muscle 

weakness with eventual disability (Yucel et al., 2018) (Ryder et al.2017).  It is caused by 

mutations in the gene located at Xp21, which encodes for the protein dystrophin. 

Continuous muscular damage and muscle fiber degeneration is evident in patients suffering 

from DMD, causing muscular weakness that is associated with motor delays, loss of 

ambulation, respiratory impairment and cardiomyopathy (Birnkrant et al., 2018). Effects 

of this genetic disorder are apparent in individuals early on from ages 1-3 through 

symptoms such as delayed walking, frequent falls, and difficulty climbing stairs due to the 

effects that a lack of dystrophin has on the muscular system (Ryder et al.2017).  In terms 

of the gastro-intestinal system, chronic constipation is highly prevalent and an ongoing 
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source of discomfort and distress in DMD patients- this is specifically due to the struggles 

of GI motility caused by the manifestation of the DMD phenotype on gastrointestinal 

smooth muscle (Brumbaugh et al., 2018) (Lo Cascio et al., 2016). Chronic constipation in 

DMD patients requires the regular use of laxatives and enemas, promoting life-threatening 

metabolic acidosis through the loss of bicarbonate, furthering the complications associated 

with the consequences of DMD (Lo Cascio et al., 2014). Most people with DMD die from 

cardiac failure before or during their 30s as the cardiomyopathy that develops in DMD 

causes the heart chambers of individual to enlarge and the walls to thin out, ultimately 

leading to the development of heart failure (Ryder et al., 2017). Although death is 

inevitable, the gastrointestinal effects of DMD result in a very poor quality of life for 

patients suffering from the disease. 

1.2: Dystrophin Introduction- Background, Function, and Pathogenesis 

DMD is caused by mutations in the gene that encodes for the 427-kD cytoskeleton 

protein dystrophin (Nowak & Davies 2004). The dystrophin gene is the largest in the 

human genome, consisting of 2.6 million base pairs of DNA and 79 exons. The full-length 

dytrophin isoform, dp427, is generated from three distinct, tissue specific promoters: the 

(M) muscle type promoter that drives expression of dystrophin in all three muscle groups, 

the brain-type (B) promoter that drives dytrophin expression in cortical and cerebellar 

neurons and the heart, and the purkinje type (P) promoter that drives cerebellar dystophin 

expression (Petkova et al., 2016). Around 60% of the mutations of dystrophin are due to 

large insertions or deletions that lead to further downstream frameshift errors (Nowak & 

Davies 2004). 
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Structurally, the dystrophin protein plays a critical role in muscles in linking the 

intracellular actin cytoskeleton of a myocyte to the extracellular matrix via the dystrophin 

associated protein complex (DAPC), protecting the sarcolemma from contractile stress 

(Blake et al., 2002) (Petkova et al., 2016) (Petrof 2002). Dystrophin contains four main 

functional domains: an amino (N) terminus that connects to the intracellular F-actin 

cytoskeleton, the central rod domain that contains spectrin-like repeats, the cysteine rich 

domain, and the carboxyl terminus that binds the DAPC, providing the link between the 

intracellular cytoskeleton and the ECM (Guiraud et al., 2015) (Renzhi et al., 2011) (Wang 

et al., 2016). The spectrin-like repeats of dystrophin’s rod like domain predict that 

dystrophin may function as a shock absorber, resisting multiple rounds of muscle 

contraction and relaxation (Guiraud et al., 2015). Furthermore, dystrophin itself assembles 

several transmembrane proteins and cytoplasmic proteins into the DPAC, which is divided 

into: the dystroglycan complex, sarcoglycan complex, and cytoplasmic and ECM 

components. Ultimately, the DAPC connects the cytoskeleton with the ECM, leading to 

the mechanical stability of the sarcolemma and protection against contraction-induced 

muscle damage (Petkova et al., 2016). The vast majority of patients with DMD completely 

lack dystrophin; however, even with reduction in the amount or alteration in the size of the 

dystrophin gene leads to a less severe type of muscular dystrophy of Becker’s Muscular 

Dystrophy, suggesting the crucial impact dystrophin has on the muscular system (Nowak 

& Davies 2004). 
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Figure 1. Diagram of Dystrophin (Kamdar 2016 JACC). Schematic diagram of DGC 

(dystroglycan complex). DGC is seen to span the sarcolemmal membrane and link the cytoplasmic 

actin cytoskeleton to the ECM via dystrophin. The DGC includes sarcoglycans, β-dystroglycan, 

and extracellular α-dystroglycan. Cytoplasmic components include dystrophin which binds to 

dystrobrevin, syntrophin, and nitric oxide synthase. 
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1.3: Dystrophin- Skeletal Muscle 

Skeletal muscles are dynamic tissues that undergo stress from each contraction. The 

connection between the cytoskeleton of the muscle cell and the ECM is imperative for 

maintaining cellular integrity and function during each cycle of contraction and stress 

(Guiraud et al., 2015) (Renzhi et al., 2011) (Wang et al., 2016). In completely regular, non-

affected skeletal muscles, the susceptibility for mechanical damage is ongoing; however, 

homeostasis is maintained through injury repair by muscle stem cells and satellite cells.  In 

DMD, DAPC, which is responsible for the physical connection of the sarcolemmal 

cytoskeleton with the ECM, loses its ‘structural linkage’ due to the loss of dystrophin, 

making the sarcolemma prone to further damage by mechanical stress and leaving the 

repair processes incapable of maintaining homeostasis (Beyers et al., 1993). Now during 

contraction, there is sarcolemmal damage, an increase in membrane permeability to Ca++ 
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and small ions, leading to cell death and dysfunction. This imbalance between skeletal 

muscle degeneration to regeneration initiates the process of fibrosis via inflammatory 

processes, which is a hallmark of DMD (Guiraud et al., 2015) (Han et al., 2011). 

Histologically, normal skeletal muscles consist of muscle fibers that are evenly spaced, 

angular, and uniform in size; on the contrary, DMD muscle biopsies show necrotic and 

degenerative muscle fibers, with the lost muscle myofibers being replaced by connective 

tissue and fat (Blake et al., 2002) (Guiraud et al., 2015).  

 

1.4: Dystrophin- Cardiac Muscle 

95% of patients with DMD develop cardiomyopathies by the age of 20, and cardiac 

failure is one of the major sources of mortality in DMD patients, with respiratory failure 

being the other (Birnkrant et al., 2018) (Mourkioti et al., 2013) (Kaprielian and Severs 

2000). Cardiac muscles of DMD patients either completely lack dystrophin or have a 

truncated version of the protein. It is understood that dystrophin plays a role in linking the 

cytoskeleton to the ECM via DAPC (Mourkioti et al., 2013). It is the cytoskeleton that 

allows cardiomyocytes to a maintain their characteristic shape and structure despite the 

contraction-induced damage imposed on the cardiac muscle cells from the cyclic 

contractions of the heart (Mourkioti et al., 2013) (Kaprielian and Severs 2000) (Kuo and 

Ehrlich 2015). 

Compared to skeletal muscles, dystrophin in cardiomyocytes is not only distributed 

along the sarcolemma, but also the transverse tubules, where it is not seen in the skeletal 

muscles (Kaprielian and Severs 2000) (Kaprielian et al., 2000) (Byers et al., 1991). 
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Dystrophin is also absent from the membrane that overlays the adheren junctions of the 

intercalated discs (Byers et al., 1991) (Kaprielian and Severs 2000).  

Dystrophin’s structural role in providing membrane stability and increased 

mechanical strength of the myocyte membrane, it is well understood that in 

cardiomyocytes, like in skeletal muscles, it plays an important role in regulating the force 

of transmission in cardiomyocytes during the cyclic process of contraction in the heart 

(Kaprielian and Severs 2000) (Kaprielian et al., 2000) (Shirokova and Niggli 2013). 

Nevertheless, the distribution of dystrophin along the T-tubules suggests that dystrophin 

serves roles more than just contractile force as T-tubules are not directly affected by 

membrane distortion during cardiac contraction (Kaprielian and Severs 2000) (Kaprielian 

et al., 2000). 

 

1.5: Dystrophin- Smooth Muscle 

In smooth muscle cell membranes, dystrophin is not seen to be distributed uniformly 

across the SMC membrane, but more distantly and discontinuously (Beyers et al., 1991) 

(North et al., 1993). More specifically, dystrophin is seen to be dispersed in the caveolae-

rich domains of the smooth muscle cells (North et al., 1993).  

During the contraction of smooth muscles, the mechanical damage from muscle 

contraction falls upon the sarcolemma, where just as in skeletal and cardiac muscles, 

dystrophin provides the mechanical support to the SMC membrane via anchorage of the 

cytoskeleton to the ECM. Nonetheless, the distribution of dystrophin in caveolae-rich 

domains predicts interaction between these two structures, suggesting that dystrophin may 
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also act as a tension-sensing molecule that conveys information about sarcolemmal stress 

to the mechanosensitive Ca++ channels (Beyers et al., 1991). 

 A distinct feature found on contractile SMCs is the abundance of caveolae, 

exceeding 160,000 in number on a single SMC. Caveolae contribute to mechanisms that 

modulate contractile and proliferative activity with SMCs. They contain caveolins that are 

needed for scaffolding and signal-transduction (Halayko and Stelmack 2005).  Caveolin-1 

attaches to the intracellular tail of B-dystroglycan, the core transmembrane subunit of the 

dystrophin-glycoprotein complex (DGC/DPAC), which is linked to the intracellular actin 

via dystrophin and ECM laminin via a-dystrogycan. Caveolin-1 and dystrophin overlap at 

the membrane of contractile SMCs, where one of the key roles of dystrophin/DGC is to 

stabilize the plasma membrane to protect it against any damaging contraction-induced 

force. The close association of caveolins with DGC and cytoskeleton may also play a 

unique role in mediating and stabilizing the ordered compartmentalization of caveolae on 

the plasma membrane (North et al., 1993) (Beyers et al., 1991) (Halayko and Stelmack 

2005).  

 Disruption of DGC due to the loss of dystrophin leads to DMD; however, abnormal 

number, size, and shape of caveolae is also evident in DMD, suggesting that dystrophin is 

not only essential for providing protection against contractile stress, but also the 

organization of caveolae on the plasma membrane; an incompetent DGC from dystrophin 

loss leads to the compromise of caveolae compartmentalization (Halayko and Stelmack 

2005). 

1.6: Overview of Gastrointestinal Tract Structure and Function  
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The GI tract consists of a series of hollow organs that span from the oral 

cavity/mouth to the anus, with several accessory organs and glands that add secretions to 

these hollow organs. Each of these hollow organs are separated by sphincters, which allows 

these organs to have specialized functions. The mouth and the oropharynx are responsible 

for the mechanical digestion of dietary substances via mastication (chewing), lubrication 

of the food, initiation of carbohydrate and lipid digestion via salivary amylase and lingual 

lipase and propelling the food into the esophagus. The esophagus acts as conduit to the 

stomach, through which the bolus enters the stomach. The stomach temporary stores food 

and initiates mechanical digestion of dietary substances through churning, and chemically 

digests food through protease and hydrochloric acid (HCl) secretions. Once gastric 

contents are mixed with the hydrochloric acid and do not exceed a diameter of 2 mm, 

chyme is orderly transferred to the proximal small intestine (duodenum) through the 

pyloric sphincter, followed by peristaltic migration distally to the jejunum and then then 

the ileum. The small intestine is the ‘hotspot’ for nutrient absorption and continues the 

general digestive processes. Pancreatic enzymes/secretions and brush border enzymes of 

the small intestine complete digestion by breaking down dietary contents in the correct 

chemical form that allow for intestinal absorption. Contents of indigestion enter the colon, 

and travel through the cecum, ascending colon, transverse colon, descending colon, and 

sigmoidal colon, culminating in the rectum before it has amassed sufficiently to be excreted 

from the anus.   

Accessory organs and glands include the salivary glands, pancreas, and liver. The 

salivary glands secrete saliva, salivary amylase, and lingual lipase, all of which contribute 
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to the digestion of carbohydrates and lipids in the oral cavity. The pancreas secretes 

pancreatic enzymes such as chymotrypsin, amylase, and lipase for the digestion of proteins, 

carbohydrates, and lipids. In addition, it also secretes bicarbonate (HCO3
-) to neutralize the 

incoming gastric acid from the stomach. Bile is produced in the liver and stored in the 

gallbladder for future delivery in the duodenum for lipid digestion/emulsification.  

 

1.7: Anatomy of Gastrointestinal Wall 

The alimentary canal is arranged into certain organizational layers that are common 

to all segments of the tract. Surrounding the luminal space of the GI tract is the mucosal 

layer that consists of an epithelial layer, an underlying layer of loose connective tissue 

called the lamina propria that contains enteric neurons, immune cells, and capillaries, and 

thin layer of smooth muscle known as the muscularis mucosae. Enclosing the mucosa is 

the submucosa, a layer of loose connective tissue that contains a larger vasculature than the 

lamina propria, along with the submucosal plexus (enteric neurons), and glands such as 

Brunner’s glands that secrete substances into the GI lumen. The submucosa is surrounded 

by the muscularis externa, that consists of an inner circular muscle layer and an outer 

longitudinal muscle layer. Both are responsible for peristalsis, which is characterized by a 

progressive wave of relaxation, followed by contraction. The serosa is an enveloping layer 

of connective tissue lined with mesothelium composed squamous epithelial cells, covering 

intraperitoneal organs. On the contrary, the adventitia is the outermost connective tissue 

layer that covers retroperitoneal organs anchored to the posterior abdominal wall.  
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1.8: Motility Functions of Colon (Large Intestine) 

Colonic contractions are regulated by myogenic, neurogenic, and hormonal factors. 

Parasympathetic control of the proximal two-thirds of the colon is mediated by the vagus 

nerve, whereas the parasympathetic control of the descending and rectosigmoid colon is 

mediated via pelvic nerves originating from the sacral spine.  

The proximal colon has two types of motor activity, non-propulsive segmentation 

and mass peristalsis. Non-propulsive segmentation is generated by slow-wave activity that 

produces circular-muscle contractions that churn and mix the ingesta, presenting them to 

the mucosa where absorption occurs and moving them in an caudad direction. 

Antiperistaltic contractions propagate toward the ileum, hampering the movement of the 

colonic contents through the colon, and allowing further absorption of water and 

electrolytes.  These segmental contractions are what give the large intestine its typical 

haustra appearance. Haustra are small pouches caused by sacculation, giving the colon its 

segmented look. The colonic contents during segmental mixing are retained in the proximal 

large intestine for long periods as fluid and electrolyte absorption continues- giving the 

large intestine its reservoir function. Mass peristalsis occurs when the colonic contents are 

propelled distally 20 cm or more, representing the major form of propulsive motility in the 

colon.  

The distal colon is primarily characterized by non-propulsive segmentation. It is in 

this distal colon that the final desiccation of colonic contents occurs and where these 

contents are stored prior to an occasional mass peristalsis that propels them into the rectum. 
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The rectum itself is kept nearly empty by non-propulsive segmentation until it is filled by 

mass peristalsis of the distal end of the colon. Filling of the rectum triggers a series of 

reflexes in the internal and external sphincters that ultimately lead to defecation.  

 

1.9: Smooth Muscle Structure with Contractile Protein Emphasis 

Smooth muscles are distributed in the walls of various organs and systems, ranging 

from blood vessels, stomach, intestines, bladder, airways, uterus, and the penile and clitoral 

cavernosal sinuses (Webb 2003). Smooth muscle cells lack the striated banding pattern 

found in cardiac and skeletal muscles and receive neural innervation from the autonomic 

nervous system. The contractile state of the smooth muscle is controlled by hormones, 

autocrine/paracrine agents, and other local chemical signals. Changes in load or length also 

develop the tonic and phasic contractions of the SMC’s. Regardless of what stimulus 

regulates the contractile state in SMC’s, the cross-bridge cycling between actin and myosin 

is what ultimately develops force, with Ca++ ions initiating contractions (Gunst and Tang 

2000). 

The contractile apparatus of smooth muscles is very similar to skeletal but is not as 

highly organized into discrete sarcomeres as in the striated muscles. Thick myosin 

filaments and thin actin filaments are the primary constituents of the smooth muscle 

contractile apparatus, colocated in the contractile domain of the cell (Horowitz et al., 1996) 

(Morgan and Gangopadhyay 2001) (Wang et al., 2012).  

Thin filaments are 6-8 nm in diameter and contain actin, which exists as F-actin in 

vivo, as their main protein constituent. Furthermore, the cellular content of actin in smooth 



www.manaraa.com

 21 

muscle is ~ twice that of striated muscles. It is well understood that actin-myosin 

interaction initiates contraction in all three muscle groups; however, there are thin-filament 

regulatory proteins in smooth muscle that associate with actin and modulate cross-bride 

function but are understood at a lesser extent (Babu et al., 2000). 

Thick filaments are bipolar assemblies composed of multiple myosin molecules. 

Each myosin aggregate is composed of two intertwined heavy chains (SM-MHC), a pair 

of 17-kDa non-phosphorylatable alkali light chains (ELC), and a pair of regulatory 20-kDa 

light chain (MLC20). The myosin heavy chain dimers form globular amino terminal heads 

and coiled-coil tails at their carboxy terminus. The myosin head has an intrinsic actin-

activated Mg2+ ATPase activity, through which myosin is able to transform the chemical 

energy stored in ATP to mechanical work associated with smooth muscle contraction. 

Mucle contraction is driven by the cyclical interaction between the myosin thick filament 

and actin thin filaments coupled with ATP hydrolysis (Farah and Reinach 1995). A cross 

bridge is formed between the actin and myosin, that produces force and movement as it 

‘tilts’ into subsequent bound states until finally detaching (Babu et al., 2000) (Viegal et al., 

2003).  

 

 

1.10: Excitation Contraction Coupling and Thin Filament-Associated Proteins 

In all three muscle types, an increase in [Ca++]i triggers contraction via the removal 

of cross-bridge cycling inhibition (Farah and Reinach 1995) (Holda et al., 1998) (Horowitz 

et al., 1996) (Merlini et al, 2003). An increase in intracellular Ca++ concentrations in the 



www.manaraa.com

 22 

smooth muscle initiates certain processes that ultimately increase the ATPase activity of 

myosin. Binding of four Ca++ ions to calmodulin forms the Ca++-Calmodulin complex that 

activates myosin light chain kinase (MLCK), responsible for phosphorylating the 

regulatory 20-kDa light chain. The principal function of calmodulin in smooth muscle is 

to activate cross-bridge cycling and development of force in response to the transient 

increase in intracellular calcium concentration. Rather than troponin C (as in striated 

muscles), calmodulin is the calcium binding protein responsible for contraction 

transduction (Farah and Reinach 1995) (Holda et al., 1998) (Horowitz et al., 1996) (Merlini 

et al, 2003). This phosphorylation of Ser19 on the 20-kDa regulatory light chain of myosin 

is fundamental for the actin-activated myosin ATPase and interaction between actin and 

myosin which initiate smooth muscle contraction (Farah and Reinach 1995) (Holda et al., 

1998) (Horowitz et al., 1996) (Kuo and Ehrlich 2015) (Walsh 1994).  
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Figure 2. Smooth Muscle Contraction. This figure shows a general summary of the process of 

smooth muscle contraction. The initial pathway is Ca++ and calmodulin (CaM) dependent, where 

the Ca++/CaM complex activate the myosin light chain kinase (MLCK), triggering contraction via 

myosin light chain (MLC20) phosphorylation. This represents the initial contraction. The sustained 

pathway is Ca++/CaM independent and requires the inhibitions of myosin light chain phosphatase 

(MLCP) to keep the MLC20 phosphorylated and the contraction sustained.  

GPCR: G-Protein Coupled Receptor; PLC-β1: Phospholipase C β-1 ; IP3: Inositol 1,4,5-

triphosphate; SR: Sarcoplasmic Reticulum; Ca++: Calcium; CaM: Calmodulin; MLCK: Myosin 

Light Chain Kinase; MLC20-P: 20 kD Myosin Light Chain; MLCP: Myosin Light Chain 

Phosphatase; RhoA: Ras Homolog gene family, member A; ROCK: Rho associated, coiled-coil-

containing protein kinase 1; CP17: C-potentiated Inhibitor 17; PKC: Protein Kinase C;  

 

 

 

 

 

This mechanism pertains specifically to thick filaments, and it is apparent that 

smooth muscle cross-bridges are regulated by the phosphorylation of MLC20; however, 

additional regulation of smooth muscle contraction through thin-filament associated 

proteins is indicated. Thin-filament regulation is one of several mechanisms invoked to 

explain the well-known capacity of smooth muscles to maintain tone at low MLC20 

phosphorylation. These thin-filament associated proteins include: tropomyosin, calponin, 

caldesmon, and smoothelin (Horowitz et al., 1996) (Morgan and Gangopadhyay 2001).  

Tropomyosin. Individual tropomyosin molecules consist of two identical alpha 

helices that coil around each other and sit near the two grooves that are formed by the two 

helical actin strands. The head to tail contact between adjacent tropomyosin proteins results 

in a continuous filament that spans around seven actin monomers (Farah and Reinach 1995) 
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(Holda et al., 1998) (Horowitz et al., 1996) (Merlini et al, 2003). The role of tropomyosin 

is to interfere with the binding of myosin to actin. In skeletal muscles, through its 

interaction with the troponin complex, tropomyosin acts as a Ca++ switch turning myosin 

ATPase activity on and off (Farah and Reinach 1995) (Holda et al., 1998) (Horowitz et al., 

1996) (Merlini et al, 2003). In smooth muscles, tropomyosin’s role is less clear due to the 

lack of troponin; however, it is suggested that tropomyosin inhibits acto-myosin ATPase 

activity in smooth muscle as well, through its interaction with caldesmon17,27,33,62.  

Caldesmon. Caldesmon is an actin, tropomyosin, myosin, and calmodulin binding 

protein. Like the other thin-filament associated proteins, caldesmon also tonically inhibits 

the ATPase activity of myosin in smooth muscle. It inhibits actin-activated Mg2+-ATPase 

of smooth muscle myosin by reducing the affinity between actin and myosin. This 

inhibition is a result of competition between caldesmon and the myosin head for a binding 

site on actin as both can displace one another from the actin thin filament. Structurally, the 

carboxy-terminal domains of caldesmon are responsible for actin binding and inhibition of 

myosin ATPase activity in vitro. The amino-terminal domains bind to myosin and tethers 

myosin to actin in conjunction with the C-terminal actin binding domains. There are also 

two high-affinity tropomyosin binding sites on the C-terminal domain of caldesmon and 

between resides 230 and 419, indicating the function caldesmon plays in tropomyosin-

mediated inhibition of acto-myosin ATPase activity. Furthermore, it is observed that the 

presence of tropomyosin increases caldesmon-actin binding affinity (Farah and Reinach 

1995) (Holda et al., 1998) (Horowitz et al., 1996) (Merlini et al, 2003) (Morgan and 

Gangopadhyay 2001). 
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Calponin. Calponin is another thin-filament associated protein that like caldesmon, 

tonically inhibits the interaction between myosin and actin. Its function of binding to F-

actin and inhibition of ATPase activity are localized to its central domain. Calponin inhibits 

the ATPase activity of myosin heads cross-linked to actin resulting from a conformational 

change in actin induced by calponin binding and actin’s reduced capacity to activate 

myosin ATPase.  It contains three isoforms, h1, h2, and an acidic variant, with h1 being 

smooth muscle specific (Holda et al., 1998) (Horowitz et al., 1996) (Merlini et al, 2003) 

(Morgan and Gangopadhyay 2001).  

Smoothelin. Smoothelin’s are actin-binding proteins that are abundantly expressed 

in visceral smooth muscle as smoothelin-A, and expressed in vascular smooth muscle as 

smoothelin-B47. Both isoforms of smoothelin are found only in actively contracting smooth 

muscles. During pathological conditions associated with GI tract or vascular system, 

smoothelin-A and smoothelin-B expression is lower with adverse effects being apparent in 

the contractility of the two systems. Ultimately, it is understood that smoothelin is 

imperative for optimal contractility of smooth muscle, but the mechanism through which 

it accomplishes its function is not clear (Niessan et al., 2005).  

 

1.11: Excitation-Transcription Coupling  

Excitation-transcription coupling is a process that is highly dependent on [Ca++]i – 

specific stimuli and activates various transcription factors that elicit transcriptional 

responses depending on the conditions of the cell both extracellularly and intracellularly42. 

Smooth muscle cells of the vascular system require expression of a unique range of 
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contractile proteins/genes like SM-MHC, SM22alpa, calponin, smoothelin, etc (Misarkova 

et al., 2016) (Wamhoff et al., 2006).  

CREB (cAMP response element binding protein). CREB is highly expressed and 

active in quiescent smooth-muscle cells. It promotes smooth muscle gene expression and 

decreases proliferation through regulating the expression of cell cycle regulatory genes, 

genes encoding for growth factors, growth factor receptors, and cytokines. cAMP/PKA 

pathway, MAPK pathway, and more importantly the Ca++- Calmodulin complex, which 

activates MLCK and promotes MLC20 phosphorylation to induce contraction, also 

promotes the phosphorylation of CREB via CamK regulation (Wamhoff et al., 2006) 

(Marchand et al., 2012). 

NFAT and NFkB. NFAT transcription factors include 4 isoforms, NFAT1, 

NFAT2, NFAT3, and NFAT4. These factors are activated by calcineurin, a Ca++- 

Calmodulin-dependent phosphatase that is activated during EC/ET- coupling by myofibril 

Ca++ fluctuations. The dephosphorylation of NFAT by calcineurin allows for its 

translocation to the nucleus, where expression of SM-MHC and actin are increases, 

suggesting its role in regulating expression of different SMC marker genes (Marchand et 

al., 2012). 

Ca++/CArG element. Expression of the majority of SMC markers genes like actin, 

SM-MHC, SM22a, and h1 calponin have been shown to be dependent on at least one CArG 

element, located in the promoter-enhancer regions of these genes, and intracellular Ca++ 

concentration. During depolarization-induced calcium influx through the L-type voltage-

gated Ca++ channels, there’s an increase in the mRNA levels of actin, SM-MHC, and 
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SM22a. The L-type voltage-gated Ca++ channels activation was CArG dependent 

(Marchand et al., 2012).  

 

1.12: Muscular Dystrophy- Abnormal Gastrointestinal Motility  

Various clinical manifestations such as bloating, fullness, slow colonic transit, and 

chronic constipation have been reported in the gastrointestinal tract, often with life-

threatening complications. Despite postmortem evidence of significant gastro-intestinal 

smooth muscle degeneration in DMD, its mechanism, GI function, and treatment have not 

yet been systematically studied (Lo Cascio et al., 2016) (Mule et al., 2010). It has been 

speculated that reduced slow-wave activity, along with the reduced availability of intestinal 

NO (due to the lack of dystrophin) might be a possible mechanism for the reduced intestinal 

motility and transit time (Lo Cascio et al., 2016) (Mule et al., 2010). Furthermore, this lack 

of dystrophin causes the linkage between the cytoskeleton and extracellular matrix to 

break, making muscles more susceptible to contraction-induced damage. This damage is 

associated with plasma membrane tears and ruptures, causing Ca++ influx and intracellular 

overload of Ca++. There are morphological signs of significant reduction in the thickness 

of the muscular layer, mucosal degeneration and damage to the internal membrane of 

mitochondria in the large intestine of DMD mice. Nonetheless, the cause of this damage 

and reduced contractility is not fully understood (Alves et al., 2014) (Ryder et al., 2014) 

(Sarna et al., 2010). 

 

1.13: Oxidative Stress 
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Oxidative stress and inflammation are proposed pathogenic mechanisms that can 

explain the dystrophic pathophysiology. Smooth muscles lacking functional dystrophin 

have an increased susceptibility to sarcolemmal damage after muscle contraction, leading 

to necrosis and oxidative stress, where this stress seems to exacerbate the pathology of 

DMD. The precise understanding of why this dystrophin deficiency causes ROS 

production is not clear; however, it likely correlated with the excessive amounts of 

intracellular Ca++ coupled with inflammation (Chahbouni et al., 2010).  

Elevated cytosolic Ca++ levels lead to an increase in mitochondrial Ca++, which is 

an effector of ATP synthesis. An increase in ATP synthesis causes an increase in the ROS 

production by the mitochondria through higher O2 consumption and enhanced e- flow 

through the electron transport chain (Terril et al., 2013).  Membrane damage, due to the 

contraction-induced damage in dystrophin deficient smooth muscles, results in the 

degranulation of mast cells and release of intracellular contents, activating the immune 

system. Immune cells like neutrophils and macrophages generate ROS in order to promote 

phagocytosis. NFkB immunoreactivity has also been detected in the plasma, macrophages 

and necrotic and non-necrotic fibers in the muscle of DMD patients. The NFkB 

transcription factor plays a role in the expression of TNFa and IL-1B, which in turn 

stimulate further production of ROS (Chahbouni et al., 2010) (Singh and Lin 2015). 

 

1.14: Hydrogen Sulfide (H2S) – Physiological Effects 

Smooth muscle relaxation. Hydrogen Sulfide is well-known as a poisoning and 

toxic pollutant. However, just like nitric oxide NO and carbon monoxide CO, it is 
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considered a gasotransmitter that induces relaxation in the smooth muscles (Mancardi et al 

2009). H2S is produced both enzymatically and non-enzymatically in the GI tract. The 

enzymes, cystathionine-B- lyase (CBS) and cystathionine-y-lyase (CSE), are found in the 

GI tract of mice, rat, and the colon of healthy humans. These enzymes are able to produce 

H2S via the reduction of cysteine. Non-enzymatic production of H2S in the GI tract is 

associated with sulfur reducing bacteria present in the large intestine (Wang 2012).  

The best-known physiological role for NO is as an endothelial-derived relaxing 

factor (EDRF) which shows vasorelaxant actions. H2S, like NO, has been shown to induce 

smooth muscle relaxation in the blood vessels as seen with hypertension development in 

mice with CSE knocked out (Kimura, 2011). Relaxation of these smooth muscles occurs 

mostly via the opening of ATP-dependent K+ channels58. This process of causing 

vasodilation of through the opening of ATP-dependent K+ channels preconditions against 

ischemia/reperfusion injury and myocardial infarction. A multitude of findings support this 

concept: K+-dependent ATP channel blockers attenuated H2S induced vasodilation both in 

vivo and in vitro. The relaxing effect of H2S on colonic motility has also been explained, 

in part, by its direct inhibition of the L-type C++ channels. An endothelium-dependent effect 

is also seen to contribute to these vasodilatory properties. In human endothelial cells, H2S 

caused direct inhibition of the angiotensin-converting enzyme and enhanced the 

vasorelaxation induced by NO (Kimura, 2011) (Singh and Lin 2015). 

Antioxidation. H2S also consists of a thiol group that allows it to reduce disulfide 

bonds and carry out biological effects as an antioxidant. In neurodegenerative diseases, like 

Alzheimer’s, H2S exerts its antioxidant function as a peroxynitrite scavenger. In the brain’s 
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of Alzheimer patients, considerably low levels of H2S are noted with protein nitration by 

peroxynitrite increased. When testing the effects of the ‘H2S’ donor NaSH (sodium 

hydrogen sulfide) in cultured human SH-SY5Y cells, H2S significantly inhibited 

peroxynitrite-mediated tyrosine nitration, peroxynitrite-induced cytotoxicity, intracellular 

protein nitration and protein oxidation (Whiteman et al., 2004).  

Another H2S donor/prodrug, SG1002, was used to investigate its effects on stress 

induced hypertrophic signaling in murine HL1 cardiomyocytes. SG1002 increased levels 

of H2S producing enzyme, CBS, as well as significantly inhibiting H2O2 and ET-1/Phe 

induced oxidative stress (Whiteman et al., 2004).  

Treatments. It is understood that dystrophin loss predisposes all muscle fiber types 

to contraction-induced damage that ultimately leads to muscle degeneration (Lim et al., 

2017). Today, treatment for DMD uses a multidisciplinary approach as multiple organ 

systems are affected, and these treatments are palliative at best- hoping to manage the 

complications with ambulation, respiration, and cardiac health in DMD patients. 

Prolonged, high-dose corticosteroid treatment has been most widely utilized due its 

effectiveness in delaying the disease progression by specifically affecting the aspect of 

muscle wasting presented in DMD (Biggar et al., 2001). Steroidal drugs such as prednisone 

and deflazacort have shown to preserve muscle function, with increasing muscle mass and 

slowing muscular degradation. However, the therapeutic benefits of corticosteroid 

treatment are temporary, with disease progression only being delayed and various adverse 

side effects such as growth retardation, weight gain, hypertension, and cataracts developing 

(Hori et al., 2011) (Merlini et al 2003)  
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Now, as aforementioned, oxidative stress is an important downstream signal in the 

dystrophin process, particularly due to the dysregulation of intracellular Ca++ homeostasis 

caused by contraction-induced damage and mitochondrial damage. The existence of this 

hyper oxidative status in the DMD phenotype not only implicates the role of ROS in the 

pathophysiology of DMD, but also the importance of antioxidant therapeutics for DMD 

treatment. Recently, antioxidants such as resveratrol and melatonin have been used for 

DMD treatment in mdx mice, and they presented a reduction in ROS levels, fibrosis, 

cardiac dysfunction, and an increase in lifespan (Biggar et al 2001) (Hori et al  2011) 

(Chahbouni et al 2010).  

 

1.15: Mouse Models of DMD 

Knowledge of how lack of the gene for the cytoskeleton protein dystrophin leads to 

DMD has led to the development of various mouse models used for DMD research.  

There are both naturally occurring and laboratory-generated animal models that are 

used to study the pathophysiology of DMD and therapeutic efficacy of drugs on the disease. 

Currently, there are around 60 different mouse models for DMD (Mcgreevy et al., 2015).  

The standard model of DMD is the mdx mouse, which carries the mutated 

dystrophin gene that is found in DMD patients. However, despite this deficiency in 

dystrophin, mdx mice lack the severe clinical manifestations that are present in DMD 

patients- the lifespan is only reduced by ~25% in mdx mice compared to the ~75% 

reduction seen in DMD patients. There is also a well-known discrepancy in the muscular 
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wasting that is displayed in DMD patients compared to the mdx mouse (Mcgreevy et al., 

2015) (Fulmer 2011).  

There are, however, mice models available that overcome this discrepancy, 

displaying a more severe phenotype of the DMD disease. Studies have shown that muscle 

cells of DMD patients have reduced proliferative and regenerative potential than muscles 

of healthy subjects’ due to telomerase shortening. In mice, there is minimal telomerase 

shortening with age progression, which is implicated as a cause for the discrepancy seen 

between mdx mice and DMD patients in regard to muscle degradation. Consequently, the 

mdx/mTR -/- mouse model was created, which is a double knockout (KO) mouse that lacks 

not only dystrophin, but also the telomerase RNA component (Terc) that maintains 

chromosome telomere length. Other major DMD mouse models include: utrophin KO 

mouse (mdx/Utrn -/-), α-dystrobravin KO mouse (mdx/Dtna -/-), α-7 integrin KO mouse 

(mdx/α-7 -/-), and Myod1 deficient mice (mdx/Myod1 -/-) (Fulmer 2011) (Mourkioti et al 

2013).  

 

1.16: Rationale 

The clinical effects of DMD in the large intestine of the gastrointestinal tract are 

commonly seen in DMD affected patients and animal models yet information on the 

mechanism and treatment of these complications have not been evaluated. Most of the 

underlying cause of aberrant GI function is correlated with hypocontractility; however, the 

cause of this hypocontractility in DMD patients and the effect that dystrophin deficiency 

has on contractile protein expression in smooth muscle are unknown. H2S is a well-known 
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gasotransmitter that promotes gut motility and regulates the expression of contractile 

proteins by its signaling pathway as an inhibitory transmitter. Nonetheless, its effect on 

colonic motility in DMD is unknown.  

Hypothesis. My aim is to investigate the effect the DMD phenotype has on the 

levels of thin-filament associated proteins and colonic smooth muscle contractility. I 

hypothesize that the lack of dystrophin will lead to a decrease in contractile protein mRNA 

expression and smooth-muscle function. Furthermore, oxidative stress is considered an 

important process in the pathophysiology of DMD, thus, my aim is to also examine whether 

H2S, which is known to have antioxidant function, can restore the effects of dystrophin 

deficiency. I hypothesize that H2S treatment restores the effects of dystrophin deficiency.  

Approach. Contraction and relaxation of colonic segments were measured in their 

longitudinal orientation from 3-month-old control and mdx mice, and 9-month-old control 

and mdx/mTR mice using organ bath systems. The effect of the H2S prodrug, SG1002, was 

tested in mdx/mTR mice. The expression of contractile proteins in mdx and mdx/mTR mice 

along with their age-matched control was measured using qRT-PCR and Western Blotting.  
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Chapter 2: MATERIALS AND METHODS 

 

2.1 : Reagents 

Antibodies for Calponin, Caldesmon, and Smoothelin were obtained from Abcam 

(Cambridge, MA). Antibody for Tropomyosin was obtained from Santa Cruz 

Biotechnologies, Inc. (Dallas, TX); GAPDH was obtained from Cell Signaling Technology 

(Danvers, MA) RNAqueousTM kit, TRIzol Reagent, High-capacity cDNA Reverse 

Transcription Kit, PCR Primers for Calponin (Cnn1 Mm00487032-m1 59 bp), Caldesmon 

(Cald1Mm00513995-m1 102 bp), Tropomyosin (Tpm2 Mm00437172-g1 97 bp), 

Smoothelin (Smtn Mm00449973 m1 66 bp), GAPDH (NM-008084.2 107 bp), β-actin 

(Actb Mm02619580-g1), and 18-S (4332641)were obtained from Thermo Fisher 

(Waltham, MA); Western Blotting materials, 2x Laemmli Sample Buffer,  DCTM Protein 

Assay Reagents, Clarity Max Western ECL Substrate, Clarity Western ECL were obtained 

from Bio-Rad Laboratories (Hercules, CA) T-PER® Tissue Protein Extraction Reagent was 

obtained from Thermo Scientific (Rockford, IL). All other supplies from Sigma, (St.Louis, 

MO); and Fisher Scientific, (Asheville, NC).  

 

2.2 : Animals 

3-month-old female wild-type (WT) and mdx mice (C57BL/6) were purchased from 

Jackson Laboratory (Sacramento, California). The mice were housed in an animal facility 

directed by the Division of Animal Resources at VCU. 9-month-old male WT, mdx/mTR, 

and mdx/mTR treated mice were received from Dr. Salloum’s lab at Sanger Hall, who 
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purchased their mice from the Jackson Laboratory (Sacramento, California). All 

procedures were approved by the Institutional Animal Care and Use Committee (IACUC) 

of the Virginia Commonwealth University. 

 

2.3 : H2S Treatment 

mdx/mTR mice in Dr. Salloum’s lab were treated with the H2S prodrug, SG1002, at 

different time intervals, creating two different treatment cohorts of mice. SG1002, the 

orally active slow-releasing H2S prodrug, was administered as 40 mg/kg of body weight in 

chow/every 3 days in mdx/mTR mice: Early treated mice were given SG1002 from 21 days 

old to 12 months, and late treated mice were given SG1002 from 7 months to 12 months 

old.  

 

2.4 : Collection of Tissue/Preparation of Colonic Tissue 

Mice were euthanized by CO2 inhalation and carefully observed for signs of 

complete cessation. Vertical incisions on the abdomen of the mouse model were 

performed, and the colon was removed and placed in smooth muscle buffer (SMB), 1X 

phosphate-buffered saline (PBS), or Krebs buffer solution, depending on the experimental 

method being performed. Luminal contents of the colonic tubes were appropriately flushed 

with a blunt syringe filled with SMB, PBS, or Krebs buffer. The colonic tubes were cut 

opened along the meso-colon with surgical ring scissors. The mucosa was carefully scraped 

from the smooth muscle layer, containing enteric neurons and smooth muscle cells 

(SMC’s) via round edged forceps.  
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For RNA isolation and lysate preparation, tissues were cut on ice and kept 

‘hydrated’ with PBS. For smooth muscle cell isolation, tissues were placed in SMB [NaCl 

120 mM, KCl 4 mM, KH2PO4 2.6 mM, CaCl2 2.0 mM, MgCl2 0.6 mM, HEPES (N-2-

hydroxyethylpiperazine-N’ 2-ethanesulfonic acid) 25 mM, glucose 14 mM, and Basic 

Eagle Medium (essential amino mixture) 2.1% (pH 7.4)]. For organ bath studies, Segments 

of colon, approximately 1 cm long, were immediately collected/removed and lacerated 

along the long axis of the mesenteric border. The mucosa was abraded carefully. The 

resulting longitudinal segments of colon tissue were pinned in a flat petri dish containing 

warm (37°C), oxygenated Krebs buffer solution [118 mM NaCl, 4.8 mM KCl, 1 mM 

MgSO4, 1.15 mM NaH2PO4, 15 mM NaHCO3, 10.5 mM glucose and 2.5 mM CaCl2 (95% 

O2/5% CO2, pH 7.4, 37°C). 

 

2.5 : Preparation of Dispersed Smooth Muscle Cells  

Smooth muscle cells were isolated from the colon by sequential enzymatic 

digestion, filtration, and centrifugation. Colonic tissue, carefully removed of the mucosa 

and chopped via surgical shears as aforementioned, was incubated at 31°C for 10-15 

minutes in SMB containing 0.1 % collagenase and 0.01% of soybean trypsin inhibitor. The 

partially degraded tissue was washed once with collagenase-free SMB and permitted to 

disperse spontaneously for 20 minutes. Cells were then colleceted/harvested through a 500 

um Nitex every 10 minutes.  
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2.6 : Measurement of Contraction in Muscle Strips 

The isolated smooth muscle strips were tied at the proximal and distal end by silk 

thread using caution as to not restrict the luminal portion. Each colonic segment was 

longitudinally mounted between a glass rod and isometric force transducer and submerged 

in an organ bath. Each organ bath was filled with either 7ml or 3.5 ml of Kreb’s (depending 

on the size of the organ bath) and bubbled continuously with 95% O2 and 5% CO2 at 37°C 

to maintain constant temperature in the bath systems. All the strips were raised to 0.7-0.8 

grams of tension and allowed to equilibrate for 1 hour, with flushing and refilling organ 

baths with Krebs solution every 15 minutes. Contraction was induced via muscarinic 

receptor activation (acetylcholine) at a concentration of 10 µM of acetylcholine (Ach). 

Relaxation was measured in response to 10 µM of sodium-nitroprusside (SNP), a NO donor 

that induces relaxation. The contractile response of the colonic segments to muscarinic 

receptor activation was measured in grams and expressed as mN/100 mg of tissue by 

multiplying grams by 9.8 mN. At the end of each experiment, the strips were blotted dry 

and weighed (tissue wet weight). The mean tissue weight of 3-month-old control mice was 

10.66+1.53 and the mean tissue weight of 3-month-old mdx mice was 10.75+1.38.  

 

2.7 : Measurement of Contraction in Dispersed Smooth Muscle Cells   

Contraction in freshly dispersed colonic muscle cells was determined by scanning 

micrometry. A cell aliquot consisting of 10-4 cells/ml was treated with 500 µl of medium 

containing acetylcholine (ACh, 10 µM) for 30 s or 5 minutes and the reaction was 
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terminated with 1% acrolein at a final concentration of 0.1%. Acrolein, which kills and 

fixes cells without affecting the cell length. The resting cell length was determined in 

control experiments in which muscle cells were incubated with 500 µl of 0.1% bovine 

serum albumin without the ACh. The mean lengths of 50 muscle cells treated with 

acetylcholine was measured by scanning micrometry and compared with the mean lengths 

of untreated cells. The contractile response was expressed as the percent decrease in mean 

cell length from control cell length. 

Relaxation was measured in intact muscle cells contracted with ACh (1 μM). 

Muscle cells were treated for 5 minutes with isoproterenol (10 μM) followed by ACh for 

30 s or 5 min. The reaction was terminated with 1% acrolein. The length of 50 cells treated 

with acetylcholine was measured in sequential microscopic fields by scanning micrometry. 

Relaxation was expressed as percent increase in the length of cells contracted with ACh. 

 

2.8 : Qualitative Real-Time PCR Analysis (qRT-PCR) 

To obtain mRNA from colonic tissue, 1 mL of TRIzol reagent was added to ~40-

100 mg of tissue. The mixture was homogenized via Fisher PowerGen 125 homogenizer. 

200 µL of chloroform was added to separate the solution in an aqueous and organic phase. 

The RNA remained in the aqueous phase. The solution is vortexed and allowed to incubate 

at room temperature for 5 minutes, then centrifuged at 13.3 rpm at 4°C for 15 minutes. The 

superior aqueous phase was transferred to a new autoclaved eppendorf tube and 0.5 ml of 

isopropanol was added to dissolve any salts that may have chelated on the RNA samples. 

The solution is vortexed and centrifuged at 13.3 rpm at 4°C for 20 minutes. The resulting 
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supernatant is then discarded, and 1 ml of ethanol is added, allowing precipitation of RNA 

out of the aqueous solution. The mixture is centrifuged at 13.3 rpm at 4°C for 10 minutes. 

The ethanol was then removed, and the eppendorf tubes are vacuum dried until all liquid 

phase contents have been evaporated. Twenty-five microliter of RNase and DNase free 

ultrapure distilled water is added and the tubes are allowed to incubate at 65°C for 10 

minutes. Concentration was measured using Nanodrop8000.  

RNA from each preparation was reversely transcribed using the High Capacity 

cDNA reverse transcription kits to prepare the 2x RT Master Mix [10x RT Buffer, 25x 

dNTP Mix, 10x RT Random primers, Multiscribe Reverse Transcriptase, Nuclease Free 

H2]. An equal volume of RNA was added to 2xRT Master Mix.  Quantitative RT-PCR was 

then performed on cDNA samples using the specific primers of: Tropomyosin, Caldesmon, 

Calponin, and Smoothelin, based on known sequences in mouse and Taqman gene 

expression master mix. 18-S and β-actin expression were used as controls to normalize 

expression of the target genes. The primers were designed to satisfy the use of 2-∆∆CT 

method, which is the standard method of comparing gene expression between two groups. 

With 18-S/β-actin acting as controls, a quantitative comparison between mdx, mdx/mTR 

and their age-matched control was calculated using the 2-∆∆CT method. Final calculations 

were expressed as a fold difference in the expression of mdx, mdx/mTR, and treated 

mdx/mTR mice cohorts relative to their age-matched control.  

 

2.9 : Western Blot Analysis 
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Colonic tissue, not exceeding 50 mg, were taken from animal models, cleaned and 

removed of the mucosa (as aforementioned), and transferred into new eppendorf tubes with 

appropriate amounts of 1.44mm beads and TPER (lysis buffer) in the presence of protease 

inhibitor. Bead number was calculated as 5 times the tissue weight with TPER volume 

being double the tissue weight.  Tissues were homogenized using a bullet blender. The 

supernatant was collected and centrifuged at 13.3 rpm at 4°C for 10 minutes. Protein 

concentration was then measured using a DC protein assay kit from Bio-Rad. Equal 

amounts of proteins were fractionated by SDS/PAGE and transferred on to Polyvinylidene 

difluoride (PVDF) membrane.  Blots were blocked with 1X TBS with 1% casein blocker 

for 1 hour at room temperature and then incubated overnight at 4 °C with various primary 

antibodies in 1X TBS with 1% casein (Calponin 1:5000, Tropomyosin 1:1000, Caldesmon 

1:10,000, Smoothelin 1:5000). After incubation for 1 h with horseradish-peroxidase-

conjugated corresponding secondary antibody (1:5000) in 1X TBS with 1% casein, 

immunoreactive proteins were visualized using Clarity Max Western ECL Substrate, 

Clarity Western ECL Substrate, or SuperSignal West Pico Chemiluminescent Substrate kit. 

All washing steps were performed with TBS-T. The protein bands were identified by 

enhanced chemiluminescence reagent. 

 

3.0: Statistical Analysis 

 Data and results are presented as means ± Standard Error Mean (SEM). All 

experiments were completed four or more times. Results were analyzed for statistical 

significance using unpaired student T tests. p values < 0.05 were considered significant.  
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Chapter 3: RESULTS 

 

3.1 Effect of DMD on Smooth Muscle Contraction and Relaxation 

 To assess the role of what dystrophin loss has on colonic smooth muscle function, 

we utilized mdx and mdx/mTR mouse models of that lack dystrophin and express the DMD 

phenotype.  Effect of H2S treatment on the smooth muscle contractile function in the 

mdx/mTR mouse model was assessed. Colonic tissue from mdx/mTR mice treated with 

SG1002, an orally active slow-releasing compound that provides stable, non-toxic serum 

and tissue levels of H2S. SG1002 is seen to induce cardioprotection in murine models of 

DMD; however, its therapeutic potential in the GI tract of DMD mice has not been 

evaluated.  Colonic tissue from mdx/mTR mice and mdx/mTR mice treated with SG1002 

were kindly provided by Dr. Salloum.  Smooth muscle function was measured as 

contraction in response to acetylcholine (activator of the main excitatory muscarinic 

receptor pathway), and relaxation in response to sodium nitroprusside, nitric oxide (NO) 

donor (activator of the main inhibitory nitrergic pathway) and isoproterenol (activator of 

inhibitory β-adrenergic pathway).  Contraction and relaxation were measured in intact 

colonic muscle segments and isolated colonic muscle cells.   

 Contraction and relaxation in muscle strips.  For isometric contractions, intact 

colonic segments from mdx mice, mdx/mTR mice, and their age matched control were 

placed longitudinally in an organ bath with Krebs buffer. Acetylcholine (ACh, 10 µM) was 

administered to induce contraction in the colonic tissues. Force of contraction was 

measured in grams. In muscle segments from control mice acetylcholine typically 
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produced 0.7±0.2 g of contraction and the contraction was inhibited (0.3±0.1 g) in muscle 

segments from mdx mice (Figure 3, left panel).  Contraction in grams was normalized to 

tissue and presented as mN/100 mg tissue.  ACh-induced contractions in colonic muscle 

segments from mdx mice was significantly lower compared to their age-matched control 

(15.6+3.9 mN/100 mg tissue in control and 3.8+1.4 mN/100 mg tissue in mdx mice; 

p<0.05, n=4-5) (Figure 3, right panel).  

ACh-induced contraction was also significantly decreased in colonic segments from 

mdx/mTR mice compared to their age-matched control (12.4+2.3 mN/100 mg tissue in 

control and 4.2+1.3 mN/100 mg tissue in mdx/mTR mice; p<0.05, n=4) (Figure 4). 

Although, mdx/mTR mice are shown to exhibit much severe phenotype of DMD, inhibition 

of contraction in colonic muscle strips from mdx mice is observed to be slightly greater 

than the inhibition in colonic segments mdx/mTR mice (73±6% inhibition in mdx mice 

versus 65±6% inhibition in mdx/mTR mice).   

Isometric contractions of colonic segments from mdx/mTR mice treated with 

SG1002 were also evaluated.  Acetylcholine-induced contraction in colonic segments from 

mdx/mTR mice treated with SG1002 was significantly improved compared to colonic 

segments from mdx/mTR mice (9.2+1.4 mN/100 mg in mdx/mTR mice treated with SG1002 

versus 4.2±1.3 in mdx/mTR mice) (Figure 4).   The inhibition of contraction in mdx/mTR 

mice treated with SG1002 was significantly less compared to mdx/mTR mice (23±5% 

inhibition versus 65±6% in mdx/mTR mice. p < 0.01, n=4).  These results suggest that H2S 

reversed the decrease in smooth muscle contraction in mdx/mTR mice and restored closer 

to normal levels.  
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Relaxation in response to SNP in muscle strips was measured as inhibition of ACh-

induced contraction.  Muscle strips were treated with ACh (10 µM) and after attaining a 

stable contraction, SNP (10 µM) was added to measure relaxation. SNP induced complete 

relaxation of ACh-induced contraction in muscle strips from control, mdx and mdx/mTR 

mice.  There was no significant difference in relaxation in response to SNP between mdx 

mice and their age matched control (96±2% in control and 94±3% in mdx mice) and 

mdx/mTR mice, mdx/mTR mice (treated with SG1002) and their age-matched control 

(125±5% in  control mice, 105+10 in mdx/mTR mice and 108±7% in mdx/mTR mice treated 

with SG1002) (Figures 5 and 6). These results suggest that relaxation in response to NO 

donor was not affected in colonic muscle of mdx and mdx/mTR mice.   

 Contraction and relaxation in isolated muscle cells.  Contraction and relaxation in 

response to acetylcholine and SNP in innervated muscle strips could be accredited to the 

release of transmitters from enteric neurons and/or to the effect of interstitial cells of Cajal 

(ICC) that modulate the intrinsic electrical and mechanical activity of smooth muscles. To 

identify the specific involvement of smooth muscle dysfunction to the muscle itself, 

colonic muscle cells devoid of enteric neurons and ICC were isolated from mdx mice and 

their age-matched controls, and contraction in response to ACh was measured and 

expressed as the percent decrease in basal cell length. The kinetic of acetylcholine-induced 

contraction consists of an initial Ca++-dependent phase involving activation of 

Ca++/calmodulin-dependent MLC kinase and increase in MLC20 phosphorylation and a 
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Ca++-independent phase involving inhibition of MLC phosphatase and increase in MLC20 

phosphorylation.  We measured both initial and sustained contraction in response to ACh 

in isolated muscle cells.  

The basal cell lengths of colonic smooth muscle cells were not significantly 

different in control mice and mdx mice (68±4 µm in control mice and 64±6 µm in mdx 

mice).  Treatment of cells with ACh for 0.5 min (initial contraction) caused a significant 

decrease in muscle cell length both in the colon of control and mdx mice.  However, the 

contraction in response to ACh was significantly inhibited in muscle cells from colon of 

mdx mice compared to control mice (43±5% decrease in cell length in control mice and 

25+3% decrease in muscle cell length in mdx mice; p<0.05, n=4-5) (Figure 7).  Treatment 

of cells with ACh for 5 min (sustained contraction) caused a significant decrease in muscle 

cell length both in the colon of control and mdx mice.  However, the contraction in response 

to ACh was significantly inhibited in muscle cells from colon of mdx mice compared to 

control mice (40+4% in control and 27+3 in mdx mice; p<0.05, n=4-5) (Figure 8).   The 

results in isolated muscle cells are consistent with the results in muscle strips and suggest 

that inhibition of contraction in colonic muscle strips is due to a defect in the mechanisms 

that regulate contraction intrinsic to smooth muscle cells.  

In colonic smooth muscle, inhibitory transmitters that activate cAMP/PKA or 

cGMP/PKG pathway cause muscle relaxation. To examine whether the pathways that 

mediate relaxation was affected in mdx mice, relaxation was also measured in isolated 

smooth muscle cells from the colon of control and mdx mice.  To measure relaxation, 

muscle cells were pretreated with SNP (10 µM) or isoproterenol (10 µM) and contraction 
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in response to ACh (1 µM) was measured.  Decrease in ACh-induced contraction in the 

presence of SNP or isoproterenol reflects muscle relaxation and it was expressed as percent 

inhibition of contraction (i.e., relaxation).  Relaxation in response to SNP was not 

significantly different in muscle cells isolated from the colon of control and mdx mice.  

SNP caused 83±12% relaxation in muscle cells from control mice and 92±6% relaxation 

in muscle cells from mdx mice.  (Figure 9).  These results suggest that NO-dependent 

relaxation mediated via cGMP/PKG pathway was not different in colonic muscle cells 

from control versus mdx mice.   Isoproterenol also caused 79±6% relaxation in muscle cells 

from control mice and 77±5% relaxation in muscle cells from mdx mice.  (Figure 10).  

These results suggest that G protein-coupled receptor-dependent relaxation mediated via 

cAMP/PKA pathway was not different in colonic muscle cells from control versus mdx 

mice.  The results in isolated muscle cells are consistent with the results in muscle strips 

and suggests that intrinsic relaxation mechanisms mediated by cAMP/PKA and 

cGMP/PKG pathway are not altered in mdx mice.   

 

3.2 Changes in the Expression of Thin Filament-Associated Proteins 

In smooth muscle contraction is mediated by interaction of actin with myosin.  

However, this interaction is modulated by thin filament associated proteins.   In the present 

study, we also analyzed the changes in expression of the thin filament-associated proteins 

caldesmon, calponin, tropomyosin, and smoothelin by qRT-PCR and western blot in 

smooth muscle of colon isolated from mdx, mdx/mTR, and their age-matched control mice.  
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 Caldesmon. Caldesmon is a thin-filament associated protein that regulates smooth 

muscle contraction via its interaction with actin. Caldesmon has two isoforms, h-caldesmon 

that is smooth muscle specific and l-caldesmon that is a non-muscle isoform (Morgan KG, 

2001). Expression of caldesmon mRNA was measured using primers specific for smooth 

muscle isoform by qRT-PCR in colonic smooth muscle from control and mdx mice and 

expressed as fold change from control levels. Expression of caldesmon mRNA was 

significantly decreased in colonic smooth muscle from mdx mice compared to control 

levels (p <0.05, n=4-5) (Figure 11 Left Panel). Expression of caldesmon protein was 

measured using antibodies that are not specific to smooth muscle isoform.  Western blot 

analysis showed no changes in the expression of caldesmon in colonic smooth muscle 

between control and mdx mice (Figure 11 Right Panel).  

Expression of caldesmon mRNA was also significantly decreased in mdx/mTR mice 

compared to control levels and the decrease in expression was partly reversed by treatment 

of mdx/mTR mice with SG1002 (Figure 12).  The effect of SG1002 on caldesmon mRNA 

expression was significant (p<0.05, n=4).  

Calponin: Calponin is another thin filament-associated protein that exists in three 

isoforms, h1-acidic, h2-neutral, and basic calponin. The h1-acidic isoform is smooth-

muscle specific, whereas the other two are non-muscle isoforms. Expression of calponin 

mRNA was measured using primers specific for smooth muscle isoform by qRT-PCR in 

colonic smooth muscle from control and mdx mice and expressed as fold change from 

control levels. Expression of calponin mRNA was significantly decreased in colonic 

smooth muscle from mdx mice compared to control levels (p <0.05, n=4-5) (Figure 13 Left 
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Panel). Expression of calponin protein was measured using antibodies that are not specific 

to smooth muscle isoform.  Western blot analysis showed no changes in the expression of 

calponin in colonic smooth muscle between control and mdx mice (Figure 13 Right Panel).  

Expression of calponin mRNA was also significantly decreased in mdx/mTR mice 

compared to control levels and the decrease in expression was completely reversed by 

treatment of mdx/mTR mice with SG1002 (Figure 14).  The effect of SG1002 on calponin 

mRNA expression was significant (p<0.05, n=4).  

Tropomyosin: Tropomyosin, like calponin and caldesmon, is a thin filament-

associated protein that regulates acto-myosin interaction. Two isoforms of tropomyosin 

exist, α and β tropomyosin. Expression of tropomyosin mRNA was measured using 

primers that are not isoform-specific by qRT-PCR in colonic smooth muscle from control 

and mdx mice and expressed as fold change from control levels. Expression of tropomyosin 

mRNA was significantly decreased in colonic smooth muscle from mdx mice compared to 

control levels (p <0.05, n=4-5) (Figure 15 Left Panel). Expression of the tropomyosin 

protein was measured using antibodies that are not isoform-specific.  Western blot analysis 

showed no changes in the expression of tropomyosin in colonic smooth muscle between 

control and mdx mice (Figure 15 Right Panel).  

Smoothelin: There are two isoforms of smoothelin, smoothelin-A that is specific to 

the visceral smooth muscle and smoothelin-B that is specific to vascular smooth muscle. 

Expression of smoothelin-A mRNA was measured using primers that are specific for 

visceral smooth muscle by qRT-PCR in colonic smooth muscle from control and mdx mice 

and expressed as fold change from control levels. Expression of smoothelin-A mRNA was 
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significantly decreased in colonic smooth muscle from mdx mice compared to control 

levels (p <0.05, n=4-5) (Figure 16 Left Panel). Expression of smoothelin protein was 

measured using antibodies that are not isoform-specific.  Western blot analysis showed no 

changes in the expression of smoothelin in colonic smooth muscle between control and 

mdx mice (Figure 16 Right Panel). 

 

 

 
 

 
 

Figure 3.  Colonic muscle strips were isolated from 3-month old control and mdx mice. 

Contraction in response to acetylcholine (10 µM) was measured in organ bath experiments. 

Contraction was recorded as increase in grams and calculated as mN/100g mg tissue.  Left panel: 

Bar graphs of calculated values (n=4-5). Right panel: Representative tracing of acetylcholine-
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induced contraction in colonic muscle strips from control and mdx mice.  Contraction was 

significantly decreased in mdx mice.  ** p <0.05, n=4-5 

  



www.manaraa.com

 51 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Colonic muscle strips were isolated from 9-month old control and mdx/mTR mice and 

mdx/mTR mice treated with SG1002, an orally active H2S donor. Contraction in response to 

acetylcholine (10 µM) was measured in organ bath experiments. Contraction was recorded as 

increase in grams and calculated as mN/100g mg tissue.  Contraction was significantly decreased 

in mdx/mTR ( ** p <0.05, n=4).  Treatment with SG1002 partly and significantly reversed the 

inhibition in contraction (## p < 0.05, n=4).  
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Figure 5.  Colonic muscle strips were isolated from 3-month old control and mdx mice. Relaxation 

in response to nitric oxide donor, sodium nitroprusside (SNP, 10 µM) was measured as inhibition 

of acetylcholine (10 µM)-induced contraction and calculated as percent inhibition of contraction.  

SNP completely inhibited contraction in colonic muscle strips from both control and mdx mice 

(n=4-5) 
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Figure 6.  Colonic muscle strips were isolated from 9-month old control and mdx/mTR mice and 

mdx/mTR mice treated with SG1002, an orally active H2S donor. Relaxation in response to nitric 

oxide donor, sodium nitroprusside (SNP, 10 µM) was measured as inhibition of acetylcholine (10 

µM)-induced contraction and calculated as percent inhibition of contraction.  SNP completely 

inhibited contraction in colonic muscle strips from control and mdx/mTR mice and in mdx/mTR 

mice treated with SG1002 (n=4) 
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Figure 7.  Smooth muscle cells were isolated from the colon of 3-month old control and mdx mice. 

Cells were treated with acetylcholine (1 µM) for 0.5 min and contraction was measured as 

decrease in cell length from the basal length (control: 68±4 µm and mdx: 64±6 µM) and expressed 

as percent decrease in cell length.     Initial contraction was significantly decreased in mdx mice.  

** p <0.05, n=4-5 
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Figure 8.  Smooth muscle cells were isolated from the colon of 3-month old control and mdx mice. 

Cells were treated with acetylcholine (1 µM) for 0.5 min and contraction was measured as 

decrease in cell length from the basal length (control: 68±4 µm and mdx: 64±6 µM) and expressed 

as percent decrease in cell length.     Sustained contraction was significantly decreased in mdx 

mice.  ** p <0.05, n=4-5 
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Figure 9.  Smooth muscle cells were isolated from the colon of 3-month old control and mdx mice. 

Relaxation in response to nitric oxide donor, sodium nitroprusside (SNP, 10 µM) was measured as 

inhibition of acetylcholine (1 µM)-induced contraction and calculated as percent inhibition of 

contraction.  SNP-induced relaxation was not different in colonic smooth muscle cells from both 

control versus mdx mice (n=4-5) 

 

 

 

 

 

 

 

 

 

0

2 0

4 0

6 0

8 0

1 0 0

Control mdx

R
el

a
x

a
ti

o
n

 (
%

)



www.manaraa.com

 57 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Smooth muscle cells were isolated from the colon of 3-month old control and mdx 

mice. Relaxation in response to β-adrenergic agonist isoproterenol (10 µM) was measured as 

inhibition of acetylcholine (1 µM)-induced contraction and calculated as percent inhibition of 

contraction.  Isoproterenol-induced relaxation was not different in colonic smooth muscle cells 

from both control versus mdx mice (n=4-5) 
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Figure 11.  Expression of caldesmon in colonic smooth muscle of control and mdx mice Left Panel:  

RNA was isolated from colonic smooth muscle of 3-month old control and mdx mice. mRNA 

expression of caldesmon was measured using specific primers by quantitative RT-PCR and 

expressed as fold change over control.  mRNA expression of caldesmon was significantly decreased 

in colonic smooth muscle from mdx mice compared to control (** p<0.05, n=4-5).  Right panel:  

Lysates were prepared from colonic smooth muscle of control and mdx mice and expression of 

caldesmon was measured by western blot using specific antibody.  Representative western blot 

image of 4 separate experiments was shown in the figure.  Densitometry analysis of all the images 

showed no difference in the expression of caldesmon in colonic smooth muscle between control 

and mdx mice. 
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Figure 12.  Effect of H2S on caldesmon expression in colonic smooth muscle of mdx/mTR mice.  

Left Panel:  RNA was isolated from colonic smooth muscle of 9-month old control and mdx/mTR 

mice and mdx/mTR mice treated with SG1002, an orally active H2S donor mRNA expression of 

caldesmon was measured using specific primers by quantitative RT-PCR and expressed as fold 

change over control.  mRNA expression of caldesmon was significantly decreased in colonic 

smooth muscle from mdx/mTR mice compared to control (** p<0.05, n=4). Treatment with SG1002 

significantly reversed the inhibition in caldesmon mRNA expression (## p<0.05, n=4).  
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Figure 13.  Expression of calponin colonic smooth muscle of control and mdx mice Left Panel:  

RNA was isolated from colonic smooth muscle of 3-month old control and mdx mice. mRNA 

expression of calponin was measured using specific primers by quantitative RT-PCR and expressed 

as fold change over control.  mRNA expression of calponin was significantly decreased in colonic 

smooth muscle from mdx mice compared to control (** p<0.05, n=4-5).  Right panel:  Lysates 

were prepared from colonic smooth muscle of control and mdx mice and expression of calponin 

was measured by western blot using specific antibody.  Representative western blot image of 4 

separate experiments was shown in the figure.  Densitometry analysis of all the images showed no 

difference in the expression of calponin colonic smooth muscle between control and mdx mice. 
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Figure 14.  Effect of H2S on calponin expression in colonic smooth muscle of mdx/mTR mice.  Left 

Panel:  RNA was isolated from colonic smooth muscle of 9-month old control and mdx/mTR mice 

and mdx/mTR mice treated with SG1002, an orally active H2S donor mRNA expression of calponin 

was measured using specific primers by quantitative RT-PCR and expressed as fold change over 

control.  mRNA expression of calponin was significantly decreased in colonic smooth muscle from 

mdx/mTR mice compared to control (** p<0.05, n=4). Treatment with SG1002 significantly 

reversed the inhibition in calponin mRNA expression (## p<0.05, n=4).  
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Figure 15.  Expression of tropomyosin in colonic smooth muscle of control and mdx mice Left 

Panel:  RNA was isolated from colonic smooth muscle of 3-month old control and mdx mice. mRNA 

expression of tropomyosin was measured using specific primers by quantitative RT-PCR and 

expressed as fold change over control.  mRNA expression of tropomyosin was significantly 

decreased in colonic smooth muscle from mdx mice compared to control (** p<0.05, n=4-5).  Right 

panel:  Lysates were prepared from colonic smooth muscle of control and mdx mice and expression 

of tropomyosin was measured by western blot using specific antibody.  Representative western blot 

image of 4 separate experiments was shown in the figure.  Densitometry analysis of all the images 

showed no difference in the expression of tropomyosin in colonic smooth muscle between control 

and mdx mice. 
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Figure 16.  Expression of smoothelin in colonic smooth muscle of control and mdx mice Left Panel:  

RNA was isolated from colonic smooth muscle of 3-month old control and mdx mice. mRNA 

expression of smoothelin-A was measured using specific primers by quantitative RT-PCR and 

expressed as fold change over control.  mRNA expression of smoothelin-A was significantly 

decreased in colonic smooth muscle from mdx mice compared to control (** p<0.05, n=4-5).  Right 

panel:  Lysates were prepared from colonic smooth muscle of control and mdx mice and expression 

of smoothelin was measured by western blot using specific antibody.  Representative western blot 

image of 4 separate experiments was shown in the figure.  Densitometry analysis of all the images 

showed no difference in the expression of smoothelin in colonic smooth muscle between control 

and mdx mice. 
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Chapter 4: DISCUSSION 

 

Duchenne Muscular Dystrophy is the most common form of inherited muscular 

dystrophies that affects 1 in 3300 male births (Yucel et al., 2018). This genetic disorder is 

caused by a mutation in the gene located at Xp21 which encodes for the cytoskeleton 

protein dystrophin (Yucel et al., 2018).  Dystrophin is present in all types of muscles and 

immunocytochemical studies have localized that dystrophin to the cytoplasmic surface of 

the plasma membrane associating tightly with a complex membrane glycoproteins.  

Because of its association with important structural proteins and sequence similarity with 

other structural proteins such as α-actinin, dystrophin is suggested to have an important 

structural role and provide resilience to the plasma membrane during contraction and 

relaxation.  Dystrophin a large 427 kD protein.  The dystrophin gene is transcribed into 

multiple RNA isoforms that show tissue specificity.  Byers et al have shown that in SDS-

PAGE, dystrophin characteristically appears as a doublet in skeletal and cardiac muscle 

suggesting different isoforms (Byers 1991).  In contrast, dystrophin appears as a single 

band in intestinal smooth muscle.  The levels of dystrophin in smooth muscle are lower 

compared to skeletal muscle (Byers 1991). Electron microscopy and immunofluorescence 

studies showed that dystrophin is specifically localized in caveolae this localization is 

distinct from the adherent junctions containing β1 integrin, fibronectin and vinculin (Byers 

1991) (North et al., 1993). Caveolae are microdomains of the plasma membrane that have 

been implicated in Ca++ homeostasis and signal transduction.   The ability of caveolae to 
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sequester signaling components are due to the scaffolding properties of main caveolar 

protein, cavelin-1.  Disruption of dystrophin-glycoprotein complex leads to increased 

permeability to Ca++ suggesting an important function of dystrophin in the regulation Ca++ 

homeostasis.    

In smooth muscle, Ca++ and G protein-coupled receptor signaling are not only 

important for contraction, but also determine the cell phenotype.  Caveolin-1 and the 

signaling molecules activated during contraction and relaxation of smooth muscle play an 

important in the regulation of expression of contractile protein and maintenance of 

contractile phenotype.  Loss of caveolin-1 is associated with the decreased smooth muscle 

contraction and relaxation and change to proliferative phenotype (Halayko et al., 2005). 

The importance of caveolin-1 in signal transduction and its association with dystrophin 

highlights the significance of dystrophin in regulation of smooth muscle function.   

Smooth muscle contains contractile apparatus consisting thin filaments as polymers 

of actin monomers and thick filaments as aggregates of myosin filaments.  In addition, 

thin-filaments are associated with proteins such as calponin, caldesmon, tropomyosin and 

smoothelin.  These proteins are shown to play a role in the regulation of acto-myosin 

interaction and contraction albeit the exact mechanism of regulation is not clear.  For 

example, both calponin and caldesmon inhibit acto-myosin interaction and contraction, 

whereas smoothelin promotes contraction.  Interaction of myosin and actin initiates cross-

bridge cycling and this interaction is greatly facilitated by phosphorylation of 20 kDa 

myosin light chain (MLC20).   The levels of MLC20 phosphorylation of are regulated by 

MLC kinase and MLC phosphatase.  Contractile agonists such as acetylcholine cause an 
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increase cytosolic Ca++ to stimulate Ca++/calmodulin-dependent MLC kinase and a 

decrease in MLC phosphatase; both lead to increase in MLC20 phosphorylation.   

 Initially, DMD was considered predominantly a skeletal muscle disorder, clinically 

associated with symptoms such as progressive muscular wasting, waddling gait, 

pseudohypertrophy of the calves, and this overall loss of ambulation. Cardiac 

complications recently became more prominent, as cardiomyopathy and heart failure 

related mortality has increased.  However, with advancing age, DMD patients also suffer 

from many gastrointestinal complications as well, such as bloating, gastroesophageal 

reflux, and highly prevalent, life threatening, constipation. These GI complications have 

not yet been systematically evaluated, and there is little scientific information on the 

pathophysiology and treatment of these conditions in DMD patients (Lo Cascio et al., 

2016) (Petrof et al., 2002) (Shirokova and Niggli 2013). In DMD patients colonic 

dysmotility has been attributed to changes in the peristaltic wave patterns characteristic of 

the large intestine. 

Colonic motility is regulated by enteric neurons, ICC and smooth muscle cells.  In 

addition to the smooth muscle, dystrophin is expressed in enteric neurons and ICC 

(Vannuchhi et al., 2002). Abnormalities in nitrergic neurotransmission have been 

suggested to play a role in altered colonic muscle contraction in innervated colonic muscle 

strips from mdx mice (Mule et al., 2010).To our knowledge, there are no studies on the role 

of dystrophin in the regulation of colonic smooth muscle function.  In the present study we 

tested the hypothesis that dystrophin is essential for normal contraction and absence of 

dystrophin leads to changes in the expression of contractile proteins and decreased 
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contraction.   The present study was undertaken to examine the role of dystrophin using 

isolated smooth muscle cells as well as muscle strips from colon of control and two DMD 

mouse models, mdx and mdx/mTR.  Contraction in response to acetylcholine in muscle 

strips and isolated muscle cells from colon of both mdx and mdx/mTR mice was decreased 

compared to age-matched controls.  Expression of calponin, caldesmon, tropomyosin and 

smoothelin mRNA was also decreased in colonic muscle from both mdx and mdx/mTR 

mice compared to age-matched controls.   These results suggest that changes in smooth 

muscle function contributes, in addition to the altered neurotransmission, to altered gut 

motility in DMD.  This is supported by our functional studies in isolated smooth muscle 

cells devoid of enteric neurons and ICC.  However, given the expression of dystrophin in 

enteric neurons and ICC, we cannot exclude the participation of enteric neurons and ICC 

in the altered gut motility in DMD.   

Another major finding of this study is that treatment of mdx/mTR mice with H2S donor 

restores the mRNA of contractile proteins expression and contractile function similar or 

close to control.  A novel H2S drug, SG1002, has been recently introduced to attenuate 

myocardial cellular damage by increasing antioxidant products. Furthermore, in heart 

failure patients SG1002 was seen to increase circulatory bioavailability of NO and H2S 

(Allen et al., 2010) (Chahbouni et al., 2010).  It is unlikely the effect of H2S is due to rapid 

effect on signaling pathways.  The long-term treatment with H2S points to its role as anti-

oxidant and regulation of transcription factors such as Nrf2 that are involved in the anti-

oxidation and anti-inflammation (Xie et al., 2016).  Among the multiple pathogenic 

mechanisms proposed in DMD, oxidative stress and inflammation have been implicated in 



www.manaraa.com

 68 

the pathophysiology of disease.  In support to this notion, recent studies by Boursereau et 

al (2018) have shown that NLRP3 inflammasome is involved in the pathogenesis of DMD 

and downregulation of NLRP3 inflammasome decreases DMD phenotype (Boursereau et 

al., 2018).  Increase in the activities of NFAT, AP-1 and NF-κB that play a role in 

inflammation are observed in dystrophic muscle (Evans et al., 2009).  Another study 

showed that treatment of mdx mice with the anti-oxidant N-acetyl cysteine decreased 

oxidative stress and protected the muscle fiber from stretch-induced damage (Hori et al., 

2011). Anti-oxidants such as melatonin and resveratrol have been used to ameliorate the 

muscular pathology by scavenging ROS in animal model of DMD (Biggar et al., 2001) 

(Merlini et al., 2003) (Wamhoff et al., 2006). More importantly, currently available 

treatment options for DMD are glucocorticoids and the most the significant effect of 

glucocorticoids is to inhibit expression of inflammatory genes.   

In conclusion, our results demonstrate that in mdx and mdx/mTR mice mRNA 

expression of thin filament associated proteins are decreased and this is associated with 

decrease in smooth muscle contraction.  Our results also demonstrate that treatment of 

mdx/mTR mice with H2S donor restores expression of proteins and contraction in colonic 

smooth muscle.  Our study suggests a therapeutic potential of SG1002 on the DMD 

phenotype.  An important unanswered question remains: what is the effect of absence of 

dystrophin on the intrinsic signaling pathways activated by contractile agonists in smooth 

muscle cells? The lack of dystrophin is known to alter the Ca++ homeostasis and hence it 

is hypothesized that Ca++ regulated activity of MLC kinase and MLC20 phosphorylation 

levels are also altered in mdx and mdx/mTR mice leading to decreased muscle contraction. 
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Finally, though it is clear dystrophin is an important plasma membrane protein that 

provides mechanical stability and its association caveolar proteins caveolin-1 might be 

important for contractile phenotype, future studies are required to elucidate the role of 

dystrophin in the signaling process that regulate smooth muscle contraction. 
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